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Abstract

Blackwell’s approachability theory serves as an important foundation for cur-
rent work in online learning due to the problem of regret minimization. This
survey presents a comprehensive analysis of three seminal papers that have sig-
nificantly advanced the field of approachability theory and online learning. The
papers examined include Bernstein and Shimkin (2015), Mannor et al. (2014)
and Abernethy (2011). The first paper builds upon Blackwell’s approachabil-
ity conditions to introduce a response-based algorithm for approachability that
avoids the need for Blackwell’s oracle. We then examine the extension to the
response-based algorithm by Mannor et al. in the context of partial monitoring,
which removes the need for any oracles. This survey then covers the link that
Abernethy makes between approachability and online linear optimization prob-
lems that have proven incredible influential for applying online machine learning
algorithms.

Keywords: online learning, approachability, regret

1 Introduction

Machine learning often deals with multi-objective optimization problems such as multi-
class classification, calibration and constrained optimization, just to name a few. It is
not clearly apparent that it would be reasonable to optimize for multiple objectives,
nevertheless Blackwell’s approachability theory, from his work in game theory following
Von Neumann’s minimax theorem [6], presents a way to consider target sets in any
dimension Rd as the focus of our learning, and provides algorithms to approach those
target sets efficiently.

In this survey, we will explore the various learning algorithms that are approachable,
then we will discuss some important conversions from approachability problems to
problems of interest such as no-regret learning and online linear optimization. So
far, most extensions of approachability to other problems utilize Blackwell’s original
approachability algorithm. Perhaps the other algorithms for approachability that we
discuss will make certain extensions of approachability computationally feasible for
some applications.

As opposed to discussing the work that’s been done to reduce the learning bounds
of particular approachable online learning algorithms, this survey focuses on exploring
the diversity of approachability problems that have algorithmic solutions. At the end
of our survey we discuss the problem of online linear optimization, which has been used
extensively in practice, notably its Follow-The-Regularized-Leader (FTRL) formulation
which applies online gradient descent to a variety of learning problems. It is worth
noting that there has been a considerable amount of work done on FTRL algorithms,
most recently by Kwon (2021) [7] and Dann et al. (2023) [4], to tune the regularizing
function to particular tasks, as well as to reduce the resulting regret bounds.

1



2 Blackwell

To review Blackwell’s approachability problem [3], we consider a sequential two-player
game with vector rewards between an agent and an opponent.∗ Each player has a set
of actions, let A be the set of actions by the agent and B be the set of action by the
opponent. At each round n, starting at 1, both players will select an action an ∈ A
and bn ∈ B and observe a vector of rewards r(an, bn) ∈ Rd.

Each player can sample their actions from what we call mixed actions pn ∈ ∆(A)
and qn ∈ ∆(B), where ∆(A) and ∆(B) denotes the set of distributions across the sets
A and B respectively. Let us denote the strategy† πn : (A× B)n−1 → ∆(A) to be the
agent’s process of determining a mixed action pn as a function of the previous rounds
of the game. Similarly, note the opponent’s strategy σn : (A× B)n−1 → ∆(B).

To distinguish between actual and expected rewards, let R = r(a, b) be the actual
rewards from actions a ∈ A and b ∈ B. As a shorthand, we will write the expected
rewards r(p, q), where

r(p, q) =
∑
a∈A

∑
b∈B

p(a)q(b)r(a, b)

Similarly we will denote r(p, b) =
∑

a∈A p(a)r(a, b) the expected reward from the mixed
action p and the pure action b.

In approachability, we are interested in the average actualized reward, namely

R̄n =
1

n

n∑
k=1

r(an, bk),

and whether an algorithm can lead the long-run R̄n into a closed target set S of rewards.

Definition 2.1. Approachable sets
A closed set S ⊆ Rd is approachable by the agent if there exists a strategy π of

the agent such that average actual rewards R̄n converges to S. That is, the shortest
Euclidean distance between R̄n and S, denoted by d(R̄n, S), goes to zero almost surely
for every strategy σ of the opponent at a uniform rate over the opponent’s strategies.
We can say, for every ϵ > 0 there exists an integer N such that

Pπ,σ{sup
n≥N

d(R̄n, S) ≥ ϵ} ≤ ϵ

for any strategy σ of the opponent.

Definition 2.2. B-sets
A closed set S ⊆ Rd will be called a B-set if for every x /∈ S there exists a mixed

action p∗ such that r(p∗, q) ∈ H where H is the half-space tangent to the projection of
x onto S and H ⊃ S.

Definition 2.3. D-sets
A closed set S ⊆ Rd will be called a D-set if for every q ∈ ∆(B) there exists a mixed

strategy p ∈ ∆(A) such that r(p, q) ∈ S. We shall refer to such p as a response of the
agent to q.

∗In applications of approachability theory, notably in online learning, the opponent is often referred
to as Nature since we are considering our learning agent’s ability to learn from the arbitrary actions
of Nature. See Section 6 and Section 7 for more details.

†in the context of online learning, the strategy πn of the agent is equivalent to the learning algorithm
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Consider the case where a B-set oracle O : Rd → ∆(A) gives us the mixed action
p∗ as a function of a reward (in practice, it is the average actual reward) and a D-set
oracle D : ∆(B) → ∆(A) gives us the response p∗ to q.

Theorem 2.4. Blackwell’s Theorem

1. Primal condition. A B-set is approachable.

2. Dual condition. A closed set S is approachable only if it is a D-set.

3. Convex sets. Convex D-sets are B-sets, and thus approachable.

From Blackwell’s Primal condition, we directly obtain the following approachability
algorithm.

Algorithm 1: Blackwell approachability

1 Input a B-set Oracle O
2 Initialization: At time step n=1, use arbitrary mixed action p1 and set an

arbitrary target point r∗1 ∈ S.
3 At time step n = 2, 3, . . .

1.

pn =

{
O(R̄n), if rn−1 /∈ S

arbitrary, otherwise

2. Observe rn = r(pn, b)

From this point on, we will replace the round n with the time t to have notation
more consistent with online learning. For notation such as average reward up until
round n (previously written as R̄n) we will now refer to the average reward by time T ,
written as R̄T .

3 Response-based

Let us assume that S is a closed, convex and approachable set. It follows from Theorem
2.4 that S is a D-set, so that there exists a response oracle D for any mixed action q by
the opponent. The target set S is defined by the convex hull and its response oracle D,
where S ≜ conv{r(D(q), q), q ∈ ∆(B)}. Bernstein and Shimkin [2] introduced an ap-
proachability algorithm that utilizes the response oracle, which, for some applications,
alleviates the need to compute the projection of the reward onto the target set that is
required to compute the B-set oracle used in Blackwell’s algorithm.

Their algorithm (algorithm 2) makes use of a steering vector that finds a direction
from the current average reward R̄T to a point in S that is determined by the response
oracle. The steering vector is used to formulate a scalar game, which by Von Neumann’s
minimax theorem [6] is solvable.
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Algorithm 2: Response-based approachability

1 Input a D-set oracle D
2 Initialization: At time step t = 1, use arbitrary mixed action p1 and set an

arbitrary target point r∗1 ∈ S.
3 At time step t = 2, 3, . . .

1. Set an approachability direction

λt−1 = r̄∗t−1 − r̄t−1,

where

r̄t−1 =
1

t− 1

t−1∑
k=1

r(pk, qk), r̄∗t−1 =
1

t− 1

t−1∑
k=1

r∗k

are, respectively, the average (smoother) reward vector and the average target
point.

2. Solve the zero-sum matrix game with payoff matrix defined by r(a, b) projected
in the direction λt−1. Namely, find the equilibrium strategies pt and q

∗
t that

satisfy
pt ∈ argmax

p∈∆(A)

min
q∈∆(B)

λt−1 · r(p, q),

q∗t ∈ argmin
q∈∆(B)

max
p∈∆(A)

λt−1 · r(p, q),

3. Pick p∗t = D(q∗t ), and set the target point r∗t = r(p∗t , q
∗
t ).

To present the convergence result from algorithm 2, let us define the reward span,

ρ = max
a,b,a′,b′

||r(a, b)− r(a′, b′)||

where || · || is the Euclidean norm.

Theorem 3.1. For a closed, convex and approachable set S, if an agent follows the
strategy specified in Algorithm 2 then

d(r̄T , S) ≤ ||λT || ≤
ρ√
T
, T ≥ 1, (1)

for any strategy of the opponent.

Proof. Suppose that at each step t ≥ 1, the agent chooses the triple (pt, p
∗
t , q

∗
t ) so that,

λt−1 · (r(pt, b)− r(p∗t , q
∗
t )) ≥ 0, ∀b ∈ B, (2)

Then ||λt|| ≤ ρ√
t
for t ≥ 1.

If we know p∗t is chosen from the response oracle D then

d(r̄T , S) ≤ ||λT ||, for T ≥ 1,
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In order to prove the inequality in equation 2, we show that it is implied from the
minimax theorem and our choice of (pt, q

∗
t )

λt−1 · r(pt, bt) ≥ max
p∈∆(A)

min
q∈∆(B)

λt−1 · r(p, q)

= min
q∈∆(B)

max
p∈∆(A)

λt−1 · r(p, q)

≜ max
p∈∆(A)

λt−1 · r(p, q∗t ),

4 Unknown Games

In both previous formulations of approachability, our algorithms depended on oracles
to give us our next mixed action pt. For Blackwell’s algorithm, our B-set oracle gave
us pt as function of current reward, and in our response-based algorithm our D-set
oracle gave us pt as the response to q∗t to steer our learning. As we will discuss in
Section 6, there are problems which deal with two sources of unknowness that make it
infeasible to construct or obtain the required oracles for the previous algorithms. The
first source of unknowness is that the target set S might be unknown. It could be
that some natural target set is proven to be unachievable, or perhaps not ambitious
enough. The second source of unknowness is that the structure of the game could be
unknown (or even non-existent). In that case, we can not observe the opponent’s set
of decisions, nor their strategy in hindsight.

Let us reconsider the setting of approachability for unknown games. The game is
still operating in discrete sequential rounds which we denote as t. We still have our
set of actions A and we can still consider mixed actions pt ∈ ∆(A) at each time t.
However, since we can’t observe our opponents actions, then there is no concept of the
expected reward r(p, q). Instead, we consider an alternative expected reward

rt(p) =
∑
a∈A

p(a)mt,a ≜ p⊙mt,

where mt,a represents the reward observed at time t for the agent’s action a ∈ A. We
impose the restriction that mt,a ∈ K, where K is a convex and bounded set of (Rd)A.
Thus rt(p) is interpreted as the expected reward at time t of using a mixed action p.
Note that even though we do not observe the opponent’s actions, we will still operate
under the assumption that we can observe the reward at time t for any action at ∈ A.

To solve for the unknown target set, Mannor et al. start by considering the smallest
target set in hindsight and then relax it. To do so, let’s start by defining a base target
set S and its ℓp-norm expansion Sα = {r ∈ Rd : ∃s ∈ S s.t. ||r − s||p ≤ α} for all
α ≥ 0. We can also think of the expansion set as the set of rewards with a distance
α of the base target set. Next we fix a target function ϕ : K → R+ which takes the
average actual rewards m̄T = 1

T

∑T
t=1mt and returns the α used for the expansion of

the target set, written as Sϕ(m̄t).

Mannor et al. [5] show that the optimal ϕ∗, which minimizes the distance to the
base target set with respect to the optimal p∗ ∈ ∆(A) in hindsight, is unachievable
(there does not exist an approachable algorithm for the target set Sϕ∗). Nevertheless,
if we expand the target set Sα by taking the concavification of ϕ∗, defined as the least
concave function above ϕ∗, the problem becomes achievable but not ambitious enough.
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Let the concavification of ϕ∗ be written as

ϕ∗(m) = sup

{
d

(
N∑
i=1

λip
∗(mi)⊙mi, S

)
: N ≥ 1 and

N∑
i=1

λimi = m

}

Proof. To prove that the concavification of ϕ∗ is achievable, let us introduce the graph
Gϕ of set-valued mapping m ∈ K → Sϕ(m),

Gϕ = {(m, r) ∈ K × Rd s.t. r ∈ Sϕ(m)}

Definition 4.1. A continuous target function ϕ is called achievable if the target set
Sϕ(m̄t) is approachable by the agent. Equivalently, the target function ϕ is called achiev-
able if the associated graph Gϕ is approachable for the payoff (p,m) ∈ ∆(A) × K →
(m, r). We can write (m̄T , r̄T ) → Gϕ as T → ∞.

It suffices to prove that Gϕ∗ is a B-set, that is for all m ∈ K there must exist
p ∈ ∆(A) such that (m, p ⊙ m) ∈ Gϕ. By construction, we have p∗ that satisfies
(m, p∗ ⊙m) ∈ Gϕ thus Gϕ is a B-set and equivalently it is approachable.

Now we can present a general class of ambitious enough target function by intro-
ducing a parameter Ψ, the response function to replace the optimal p∗ that we get from
ϕ∗. For an arbitrary response function Ψ, we can define the target function as,

ϕΨ(m) = sup

{
d

(
N∑
i=1

λiΨ(mi)⊙mi, S

)
: N ≥ 1 and

N∑
i=1

λimi = m

}

By construction, the target function ϕΨ gives us the approachable set SϕΨ . We can
now formulate an approachability algorithm for unknown games with respect to our
choice of response function Ψ.

As in Algorithm 4 in Section 7, the following algorithm for unknown games relies
on an auxiliary regret-minimizing strategy R‡ for scalar payoffs m′

t. Let R : (K)t−1 →
∆(A) such that for bounded payoffs m′

t ∈ [−B,B] for B > 0 we have,

max
p∈∆(A)

T∑
t=1

p⊙m′
t ≤ 4B

√
T lnA+

T∑
t=1

pt ⊙m′
t

The algorithm R is said to have a sublinear worst-case guarantee, that the regret
of R is o(T ).

‡The regret-minimizing strategy R is equivalent to the approachable strategy π from previous
sections
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Algorithm 3: Block response-based approachability

1 Input a regret minimizing strategy R (with initial action p1) and a response
function Ψ

2 Initialization: At time step n=1, use initial action p1 from R and observe m1

3 For block n = 2, 3, . . .

1. Compute the total discrepancy δn at the beginning of black n (that is, till the
end of block n− 1),

δn = r̄n−1 − r̄
(Ψ)
n−1

where

r̄n−1 =
n−1∑
k=1

k∑
t=1

pt ⊙mt, r̄
(Ψ)
n−1 =

n−1∑
k=1

kψ(m̄(k))⊙ m̄(k)

where

m̄(k) =
1

k

k∑
t=1

m(k,t)

2. Run a fresh instance Rn of R for n rounds as follows:
set p(n,1) = p1; then, for time t = 1, . . . , n,

(a) play p(n,t) and observe m(n,t),a ∈ (Rd)A

(b) feed Rn with the vector payoff m′
(n,t),a with components given, for a ∈ A,

by
m′

(n,t),a = −⟨δn,m(n,t),a⟩

(c) obtain from Rn a mixed action p(n,t+1)

Note that the subscript (n, t) refers to the time at block n for time in the block of t

Theorem 4.2. For all response functions Ψ, and an agent following algorithm 3, we
have

d(r̄T , SϕΨ(m̄T )) ≤ 10T−1/4 lnA+ 3ρT−1/2,

where ρ is the span of elements in K.

To prove Theorem 4.2, we use induction with respect to each block.

Proof. We are able to upper bound the direction δn by the span by a function β(n) so
that

||δn+1||22 ≤ β(n).

For n = 1 we define β(1) = 4ρ2.
After one induction step, we obtain

||δn+2||22 = ||δn+1||22

+ 2

(
−

n+1∑
t=1

p(n+1,t) ⊙m′
(n+1,t) +

n+1∑
t=1

p(n+1) ⊙m′
(n+1,t)

)

+ ||
n+1∑
k=1

∑
t = 1kpt ⊙mt − (n+ 1)Ψ(m̄(n+1))⊙ m̄(n+1)||22

7



Now, by applying the Cauchy-Schwartz inequality for all a and t,

|m′
(n+1,t),a ≤ ||δn+1||2||m(n+1,t),a||2 ≤ ρ

√
β(n)

By putting everything together, we prove that,

β(n+ 1) = β(n) + 8ρ
√
β(n)

√
lnA+ 4ρ2(n+ 1)2

which can be bounded by

||δn+1||22 ≤ β(n) ≤ 32ρ2(lnA)n3

Finally, we have approachability bounds

d(r̄T , SϕΨ(m̄T )) ≤
1

T
||δnT+1||+ 2ρ

nT

T

≤ 1

T
ρ
√

32n3
T lnA+ 2ρ

nT

T
≤ 10T−1/4 lnA+ 3ρT−1/2

5 Link to regret

It has been shown by many people (Blackwell, Hannan, and recently Abernethy [1])
that many regret minimization problems can be formulated as approachability prob-
lems, which implies the existence of a no-regret strategy.

Let’s first consider the simple formulation of regret for scalar rewards (referred to
as utility) u = r(p, q). The decision sets A and B are the same as in previous sections,
they depend on the particular no-regret problem. We will denote the average utility
as ŪT and the empirical distribution of q in hindsight as

q̄T (b) ≜
1

T

T∑
t=1

I{b = bt}

where I is the indicator function.

Let the best average utility in hindsight be defined as the maximum utility achieved
by a pure strategy, namely

u∗(q̄T ) ≜ max
a∈A

1

T

T∑
t=1

u(a, q̄T )

Definition 5.1. A strategy of the agent is termed a Hannan consistent no-regret algo-
rithm if

lim
T→∞

P[sup
q̄T

(u∗(q̄T )− ŪT ) ≤ 0] = 1

for any opponent strategy.
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Let S be the set of pairs {(u, q̄) : u ≤ u∗(q̄) and q̄ ∈ ∆(B)}, the set of no-regret
rewards for a given empirical distribution q̄. If we define the vector of rewards as
the pair of (ŪT , q̄T ) then we have effectively converted this simple regret minimization
problem into an approachability problem.

We can expand our definition for regret in d-dimensions similarly. Let us reformulate
our regret as the distance between the average rewards from strategyR and the negative
orphant set (−∞, 0]d, namely

RegretT (R) ≜ sup
q̄T

d(u∗(q̄T )− ŪT , (−∞, 0]d)

Since the above formulations for regret minimization can be clearly converted to
an approachability problem, we can utilize the algorithms surveyed in the previous
sections to implement a no-regret strategy. Note that we could use other distance
metrics and other target sets in place of the ones used above.

6 Link to constrained optimization

Consider the same Blackwell game as before for a scalar reward u : A×B → R, which
we will refer to as the utility function, and a vector-valued cost function c : A×B → Rs.
Assume we are given a closed convex set Γ ⊆ Rs of allowed long-term average cost.
We say that the constraint set is feasible if there exists a D-set oracle for any opponent
action q such that the expected cost c(p, q) ∈ Γ.

The constrained optimization problem can be considered an approachability prob-
lem where the reward is a concatenation of the utility and the cost r(p, q) = u(p, q)⊕
c(p, q) ∈ Rs+1. Then the target set S would be a concatenation of our target utility
and the constraint set.

Considering the goal of maximizing utility, it might be unclear to have a feasible
and ambitious target utility. Mannor et al. [5] proposed using unknown games to
solve for the target set in constrained optimization problems. Algorithm 3 offers the
construction of an ambitious and feasible target set as a function of our choice of
response function ψ.

7 Link to Online Linear Optimization

Online Linear Optimization (OLO) is a particular online convex optimization problem
where an agent is trying to minimize a cumulative linear loss function.

Let the set of decisions by the agent be a compact convex decision set A ⊂ Rd.
Each action x ∈ Rd is a weight vector that is trying to optimize the linear loss for a
no-regret algorithm. The opponent will play an action ft ∈ Rd at time t and we will
observe the reward r(x, f) = ⟨f, x⟩.

The goal of online linear optimization is to minimize the average reward R̄n by
implementing a no-regret strategy R defined below.

Definition 7.1. Given an OLO algorithm R and a sequence of loss vectors f1, f2, · · · ∈
Rd let us define the regret as

Regret(R) =
n∑

k=1

⟨fk, xk⟩ −min
x∈A

n∑
k=1

⟨fk, x⟩
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To prove the equivalence of approachability and regret minimization for OLO, we
need to introduce some notation. Let B2(r) be the ℓ2-norm ball of radius r. We will
then convert the target set into a cone by concatenating the x ∈ A with some κ to work
with the resulting cone Ã ≜ κ×A. The conversion of the target set into a cone is vital
to prove that there exists a B-set oracle for the approachability problem formulated in
Algorithm 4.

Definition 7.2. Given any set K ⊂ Rd, define the conic hull C = cone(K) ≜ {αx :
α ≥ 0, x ∈ K}. We also define the polar cone C0 ≜ {θ ∈ Rd : ⟨θ, x⟩ ≤ 0 for all x ∈ C}

Lemma 7.3. If C is a convex cone then

1. (C0)0 = C

2. Any given hyperplane H of C0 can be written as {θ ∈ Rd : ⟨θ, x⟩ = 0} for some
unique vector x ∈ C (up to a scaling factor).

Lemma 7.4. For every convex cone C in Rd

d(x,C) = max
θ∈C0∩B2(1)

⟨θ, x⟩

In order to not lose information about the underlying set when considering the
process of converting it into a cone, we shall embed the set into a higher dimension
and instead consider the cone(κ×K) ⊂ Rd+1 where κ is the diameter of K.

Lemma 7.5. Consider a compact convex set K ⊂ Rd and x /∈ K. Let x̃ ≜ κ ⊕ x and
K̃ ≜ {κ} × K. Then we have,

d(x̃, cone(K̃)) ≤ d(x,K) ≤ 2d(x̃, cone(K̃))

Algorithm 4: Conversion of approachability to OLO

1 Input a compact convex decision set K ⊂ Rd, and an approachability
algorithm R

2 Initialization: Set a Blackwell instance where A = K, B = B2(1) ,
r(x, f) = ⟨f, x⟩, and S = cone({κ} × K)0.

3 Construct an approachability oracle O.
4 At time step t = 1, 2, . . .

1. Let: pt = RO(f1, f2, . . . , ft−1)

2. Recieve: cost function ft

Algorithm 4 requires a B-set oracle O to exist to implement the blackwell approach-
ability algorithm RO. We can prove that there exists a B-set oracle for the conic target
set S = cone({κ} × K)0.

Proof. Assume we have a halfspace H which is tangent to S and contains S. Since S
is a cone, that implies H = {θ : ⟨θ, zH⟩ ≤ 0} for some zH ∈ Rd. Furthermore, S ⊂ H
implies that zH ∈ S0 = (cone({κ} × K)0)0 = cone({κ} × K). That is equivalent to
zH = α(κ ⊕ xH) for some xH ∈ A and α > 0. Thus, by construction, there exists an
oracle O(H) → xH .
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Theorem 7.6. Algorithm 4 produces the following regret bound,

Regret(R) ≤ 2κDT (R)T−1

where DT (R) is the distance by the approachability algorithm R, namely

DT (R) ≜ d(ŪT , S)

Proof. Applying Lemma 7.3 and Lemma 7.4 to DT we can prove that

DT = max
w∈cone(κ⊕A)∩B2(1)

⟨ 1
T

T∑
t=1

r(xt, ft), w⟩

From there, we can assume ||w|| = 1 so we can write w = κ⊕x
||κ⊕x|| for some x ∈ K. Now

we can show,

DT (R) ≥ max
x∈K

⟨ 1
T

T∑
t=1

r(xt, ft),
κ⊕ x

||κ⊕ x||
⟩

=
1

T
max
x∈K

∑T
t=1⟨ft, xt⟩ −

∑T
t=1⟨ft, x⟩

||κ⊕ x||

≥
1
T

(∑T
t=1⟨ft, xt⟩ −

∑T
t=1⟨ft, x∗⟩

)
||κ⊕ x∗||

≥
1
T
RegretT (R)

2κ

Although Abernethy uses the B-set oracle from Blackwell’s original approachability
algorithm, it is clear that we could implement a response-based algorithm, or any other
approachability algorithm to determine pt at each time t.

8 Conclusion

The wide variety of available approachability algorithms that we surveyed enable ex-
tensions and future work on online learning algorithms with important and efficient
learning bounds. As discussed in the paper, particular applications may or may not
have access to certain approachability oracles, so by covering the different setups for the
games that have approachability algorithms, we increase the set of available problems
that can implement a computationally feasible learning algorithm.
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